Molecular Phylogeny of Microorganisms

Edited by: Aharon Oren and R. Thane Papke
Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Israel and Department of Molecular and Cell Biology, University of Connecticut, USA (respectively)

Published: July 2010. Pages: x + 220
Published by: Caister Academic Press www.caister.com

A proper understanding of the diversity, systematics and nomenclature of microbes is increasingly important in many branches of biological science. The molecular approach to phylogenetic analysis, pioneered by Carl Woese in the 1970s and leading to the three-domain model (Archaea, Bacteria, Eucarya), has revolutionized our thinking about evolution in the microbial world. The technological innovation of modern molecular biology and the rapid advancement in computational science have led to a flood of nucleic acid sequence information, bioinformatic tools and phylogenetic inference methods. Phylogenetic analysis has long played a central role in microbiology and the emerging fields of comparative genomics and phylogenomics require substantial knowledge and understanding of phylogenetic analysis and computational methods.

In this book, leading scientists from around the world explore current concepts in molecular phylogeny and their application with respect to microorganisms. The authors describe the different approaches applied today to elucidate the molecular phylogeny of prokaryotes (and eukaryotic protists) and review current phylogenetic methods, techniques and software tools. Topics covered include: a historical overview, computational tools, multilocus sequence analysis, 16S rRNA phylogenetic trees, rooting of the universal tree of life, applications of conserved indels, lateral gene transfer, endosymbiosis and the evolution of plastids.

This book is an ideal introduction to molecular phylogeny for all microbiologists and is an essential review of current concepts for experts in the field. A recommended text for all microbiology laboratories.

Chapter 2. Methods and Programs for Calculation of Phylogenetic Relationships from Molecular Sequences. Jongsk Chun and Soon Gyu Hong
Chapter 3. Multilocus Sequence Analysis and Bacterial Species Phylogeny Estimation. Pablo Vinuesa
Chapter 4. Molecular Phylogeny of Microorganisms: Is rRNA Still a Useful Marker?. Wolfgang Ludwig
Chapter 5. The Phyla of Prokaryotes, Cultured and Uncultured. Aharon Oren
Chapter 6. Rooting the Tree of Life. Greg Fournier
Chapter 7. Applications of Conserved Indels for Understanding Microbial Phylogeny. Radhey S. Gupta
Chapter 10. Endosymbiosis and the Evolution of Plastids. Christopher E. Lane and Dion G. Durnford

Order from:
MALDI-TOF Mass Spectrometry in Microbiology
Edited by: Markus Kostrzewa and Sören Schubert (Published: 2016)

Aspergillus and Penicillium in the Post-genomic Era
Edited by: Ronald P. de Vries, Isabelle Benoit Gelber and Mikael Rørdam Andersen (Published: 2016)

The Bacteriocins: Current Knowledge and Future Prospects
Edited by: Robert L. Dorit, Sandra M. Roy and Margaret A. Riley (Published: 2016)

Omics in Plant Disease Resistance
Edited by: Vijai Bhadauria (Published: 2016)

Acidophiles: Life in Extremely Acidic Environments
Edited by: Raquel Quatrini and D. Barrie Johnson (Published: 2016)

Climate Change and Microbial Ecology: Current Research and Future Trends
Edited by: Jürgen Marxsen (Published: 2016)

Biofilms in Bioremediation: Current Research and Emerging Technologies
Edited by: Gavin Lear (Published: 2016)

Microalgae: Current Research and Applications
Edited by: Maria-Nefeli Tsaloglou (Published: 2016)

Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives
Edited by: Hideharu Shintani and Akikazu Sakudo (Published: 2016)

Virus Evolution: Current Research and Future Directions
Edited by: Scott C. Weaver, Mark Denison, Marilyn Roossinck and Marco Vignuzzi (Published: 2016)

Arboviruses: Molecular Biology, Evolution and Control
Edited by: Nikos Vasilakis and Duane J. Gubler (Published: 2016)

Shigella: Molecular and Cellular Biology
Edited by: William D. Picking and Wendy L. Picking (Published: 2016)

Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment
Edited by: Anna M. Romani, Helena Guasch and M. Dolores Balaguer (Published: 2016)

Alphaviruses: Current Biology
Edited by: Suresh Mahalingam, Lara Herrero and Belinda Herring (Published: 2016)

Thermophilic Microorganisms
Edited by: Fu-Li Li (Published: 2015)

Flow Cytometry in Microbiology: Technology and Applications
Edited by: Martin G. Wilkinson (Published: 2015)
“an impressive group of experts” (ProtoView)

Probiotics and Prebiotics: Current Research and Future Trends
Edited by: Koen Venema and Ana Paula do Carmo (Published: 2015)

Epigenetics: Current Research and Emerging Trends
Edited by: Brian P. Chadwick (Published: 2015)
“this is one text you don’t want to miss” (Epigenie); “up-to-date information” (ChemMedChem)

 Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications
Edited by: Andreas Burkovski (Published: 2015)
“Without question a valuable book” (BIOSpektrum)

Advanced Vaccine Research Methods for the Decade of Vaccines
Edited by: Fabio Bagnoli and Rino Rappuoli (Published: 2015)

Full details at www.caister.com
The phylogenetic diversity of microorganisms living at high salt concentrations is surprising. Halophiles are found in each of the three domains: Archaea, Bacteria, and Eucarya. The metabolic diversity of halophiles is great as well: they include oxygenic and anoxygenic phototrophs, aerobic heterotrophs, fermenters, denitrifiers, sulfate reducers, and methanogens. Our understanding of the biodiversity in salt-saturated environments has increased greatly in recent years. Using a combination of culture techniques, molecular biological methods, and chemotaxonomic studies, we have obtained information on the nature of the halophilic Archaea as well as the halophilic Bacteria that inhabit saltern crystallizer ponds.