Math 341: Convex Geometry

Xi Chen

479 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, CANADA
E-mail address: xichen@math.ualberta.ca
1. Euclidean Geometry

1.1. Vector spaces. Let \mathbb{R} be the set of real numbers. We use \mathbb{R}^n to denote the n dimensional Euclidean space. Every point in \mathbb{R}^n is given by an n-tuple $(x_1, x_2, ..., x_n)$, where $x_i \in \mathbb{R}$.

We can define two operations on \mathbb{R}^n. One is called vector addition: we define the sum of $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$ and $(y_1, y_2, ..., y_n) \in \mathbb{R}^n$ to be

$$
(1.1) \quad (x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, x_n + y_n)
$$

The other is called scalar multiplication: we defined the product of $\lambda \in \mathbb{R}$ and $(x_1, x_2, ..., x_n)$ to be

$$
(1.2) \quad \lambda(x_1, x_2, ..., x_n) = (\lambda x_1, \lambda x_2, ..., \lambda x_n)
$$

These two operations obviously have the following properties:

VS1 (Commutativity) For any $u = (x_1, x_2, ..., x_n)$ and $v = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$,

$$
(1.3) \quad u + v = v + u
$$

VS2 (Associativity) For any $u = (x_1, x_2, ..., x_n)$, $v = (y_1, y_2, ..., y_n)$ and $w = (z_1, z_2, ..., z_n) \in \mathbb{R}^n$,

$$
(1.4) \quad (u + v) + w = u + (v + w)
$$

VS3 (Associativity for Scalar Multiplication) For any $\lambda_1, \lambda_2 \in \mathbb{R}$ and $u = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$,

$$
(1.5) \quad (\lambda_1 \lambda_2)u = \lambda_1 (\lambda_2 u)
$$

VS4 (Distribution Law) For any $\lambda \in \mathbb{R}$, $u = (x_1, x_2, ..., x_n)$ and $v = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$,

$$
(1.6) \quad \lambda(u + v) = \lambda u + \lambda v
$$

\mathbb{R}^n, equipped with these two operations, is called a vector space over \mathbb{R}, or a real vector space. Indeed, any set equipped with two operations that satisfy the axioms VS1-VS4 is a vector space.
1. BASICS

1.1.1. Geometric representation of vectors. A vector \(u = (u_1, u_2, \ldots, u_n) \in \mathbb{R}^n \) can be represented by an “arrow” starting at point \(P = (x_1, x_2, \ldots, x_n) \) and ending at point \(Q = (y_1, y_2, \ldots, y_n) \), where \(y_i = x_i + u_i \) for \(i = 1, 2, \ldots, n \). By convention, we write \(u = PQ \). Let \(O = (0, 0, \ldots, 0) \) be the origin. Since there is a one-to-one correspondence between the vector \(\overrightarrow{OP} \) and the point \(P \), we also call a vector in \(\mathbb{R}^n \) a point from time to time.

Vector addition can be interpreted geometrically by so-called parallelogram criterion: let \(A, B, C, D \) be the vertices (in clockwise order) of a parallelogram. Then \(AB + AD = AC \).

Similarly, here is the geometric interpretation for scalar multiplication: let \(u = PQ \) and \(PR = \lambda u \). Then \(P, Q, R \) are collinear, \(|PR| = |\lambda||PQ| \) and \(Q \) and \(R \) are on the same side of \(P \) iff \(\lambda \geq 0 \).

Proposition 1.1. Let \(R \) be the point lying on the line \(PQ \) between \(P \) and \(Q \) and satisfying: \(|PR|/|RQ| = \lambda \). Then

\[
(1.7) \quad \overrightarrow{OR} = t\overrightarrow{OP} + (1-t)\overrightarrow{OQ} \quad \text{with } t = \frac{1}{1+\lambda}
\]

Proof. We see from the assumption that \(\overrightarrow{PR} = \lambda \overrightarrow{RQ} \). And since \(\overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP} \) and \(\overrightarrow{RQ} = \overrightarrow{OQ} - \overrightarrow{OR} \), we have \(\overrightarrow{OR} - \overrightarrow{OP} = \lambda (\overrightarrow{OQ} - \overrightarrow{OR}) \). And (1.7) follows. \(\square \)

Let \(V \) be a vector space (over \(\mathbb{R} \)).

1.1.2. Linear dependence and dimension. We say that \(v_1, v_2, \ldots, v_k \in V \) are linearly dependent if there exist \(\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{R} \), not all zero, such that \(\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_k v_k = 0 \); and \(v_1, v_2, \ldots, v_k \) are linearly independent if they are not linearly dependent.

Proposition 1.2. Any \(m > n \) vectors \(v_1, v_2, \ldots, v_m \) in \(\mathbb{R}^n \) are linearly dependent.

Proof. Let \(v_i = (a_{i1}, a_{i2}, \ldots, a_{im}) \) for \(i = 1, 2, \ldots, m \) and \(A = (a_{ij})_{m \times n} \). Using Gaussian elimination, \(A \) can be turn into an upper-triangular matrix \(B = (b_{ij})_{m \times n} \) after a series of row operations. That is, there exists a nonsingular matrix \(C = (c_{ij})_{m \times m} \) such that \(CA = B = (b_{ij})_{m \times n} \), where \(b_{ij} = 0 \) for \(i > j \). Therefore,

\[
(1.8) \quad c_{m1}v_1 + c_{m2}v_2 + \cdots + c_{mm}v_m = (b_{m1}, b_{m2}, \ldots, b_{mn}) = 0
\]

Since \(C \) is nonsingular, i.e., \(\det(C) \neq 0 \), \(c_{m1}, c_{m2}, \ldots, c_{mm} \) cannot be all zero. Hence \(v_1, v_2, \ldots, v_m \) are linearly dependent. \(\square \)

We say that \(v \in V \) is a linear combination of \(v_1, v_2, \ldots, v_k \in V \) if there exist \(\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{R} \) such that \(v = \lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_k v_k \). Let \(S \) be a subset of \(V \). We say that \(S \) generates \(V \) if every vector in \(V \) is a linear combination of some vectors in \(S \). We say that \(S \) is a basis of \(V \) if \(S \) generates \(V \) and \(v_1, v_2, \ldots, v_k \) are linearly independent for any finite subset \(\{v_1, v_2, \ldots, v_k\} \subset S \).
THEOREM 1.3. Let S_1 and S_2 be two bases of V. Then $|S_1| = |S_2|$.

PROOF. We will only prove the theorem when S_1 and S_2 are finite as that is the only case we need here. Let $S_1 = \{u_1, u_2, ..., u_n\}$ and $S_2 = \{v_1, v_2, ..., v_m\}$. Since S_1 generates V, v_j is a linear combination of $u_1, u_2, ..., u_n$, i.e., $v_j = a_{1j}u_1 + a_{2j}u_2 + ... + a_{nj}u_n$ for some $a_{ij} \in \mathbb{R}$. Suppose that $m > n$.

By Proposition 1.2, the m vectors $(a_{1j}, a_{2j}, ..., a_{nj})$ are linear dependent. Hence there exist $\lambda_1, \lambda_2, ..., \lambda_m \in \mathbb{R}$, not all zero, such that

$$
\sum_{j=1}^{m} \lambda_j (a_{1j}, a_{2j}, ..., a_{nj}) = 0
$$

By (1.9), we have

$$
\sum_{j=1}^{m} \lambda_j v_j = \sum_{j=1}^{m} \lambda_j (a_{1j}u_1 + a_{2j}u_2 + ... + a_{nj}u_n) = 0
$$

and hence $v_1, v_2, ..., v_m$ are linear dependent. Contradiction. Therefore, $m \leq n$. Similarly, $n \leq m$. Therefore, $m = n$ and $|S_1| = |S_2|$. \hfill \Box

Let S be a basis of V and we define the dimension of vector space V to be $\dim V = |S|$. By the above theorem, $\dim V$ is independent of the choice of basis S. To emphasize the fact V is a vector space over \mathbb{R}, we write $\dim_\mathbb{R} V$ for the dimension of V over \mathbb{R}. Obviously, $\dim_\mathbb{R} \mathbb{R}^n = n$.

1.1.3. Linear subspaces. A subset $W \subset V$ is a (linear) subspace of V if W is closed under vector addition and scalar multiplication, i.e., $u + v \in W$ for any $u, v \in W$ and $\lambda u \in W$ for any $u \in W$ and $\lambda \in \mathbb{R}$. A subspace $W \subset V$ is itself a vector space (over \mathbb{R}).

PROPOSITION 1.4. $W \subset V$ is a linear subspace if and only if $u + \lambda v \in W$ for any $u, v \in W$ and $\lambda \in \mathbb{R}$.

PROOF. “\Rightarrow”: Since W is a subspace, $\lambda v \in W$ and hence $u + \lambda v \in W$.

“\Leftarrow”: Since $u + \lambda v \in W$ for all $u, v \in W$ and $\lambda \in \mathbb{R}$, $u + v \in W$ by letting $\lambda = 1$ and $\lambda v \in W$ by letting $u = 0$. \hfill \Box

For two subsets $A, B \subset V$ and $\lambda \in \mathbb{R}$, we define

$$
A + B = \{a + b : a \in A, b \in B\} \text{ and } \lambda A = \{\lambda a : a \in A\}
$$

If $A = \{x\}$ consists of a single vector, we often write $x + B$ for $A + B$ and we call $x + B$ a translate of B. The following are obvious.

PROPOSITION 1.5. Let $A, B, C \subset V$ and $\lambda, \mu \in \mathbb{R}$. Then

1. $A + B = B + A$;
2. $(A + B) + C = A + (B + C)$;
3. $\lambda (A + B) = \lambda A + \lambda B$;
4. $(\lambda + \mu)A = \lambda A + \mu A$;
5. $(\lambda \mu)A = \lambda (\mu A)$;
6. A is a subspace if and only if $A + A = A$ and $\lambda A = A$ for any $\lambda \neq 0$.

(7) If A and B are subspaces, so is $A + B$.
(8) The intersection of any collection of subspaces is a subspace.

Let V and W be two vector spaces. We call a map $f : V \to W$ a linear map or transformation if $f(x + y) = f(x) + f(y)$ and $f(\lambda x) = \lambda f(x)$ for all $x, y \in V$ and $\lambda \in \mathbb{R}$.

1.1.4. Affine dependence and affine subspaces. The translate of a linear subspace of V is called an affine subspace. Let $W \subset V$ be a linear subspace and $x + W$ be an affine subspace. The dimension of $x + W$ is defined to be the dimension of W. An affine subspace of dimension 1 is called a line. An affine subspace in V of dimension $\dim V - 1$ is called a hyperplane. An affine subspace of dimension k is called a k-plane.

Proposition 1.6.

(1) Let $S \subset V$ be an affine subspace V and let $y \in S$. Then $S - y = (-y) + S$ is a linear subspace of V.

(2) The intersection of any collection of affine subspaces is an affine subspace.

Proof. For (1), let $S = x + W$ for some $x \in V$ and linear subspace $W \subset V$. Then $y = x + w$ for some $w \in W$. Then $S - y = x + W - (x + w) = W - w$. We claim that $W - w = W$. For any $u \in W$, $u + w \in W$ and hence $u = (u + w) - w \in W - w$; therefore $W \subset W - w$. And since $u - w \in W$, $W - w \subset W$. Therefore, $S - y = W - w = W$ is a linear subspace.

For (2), let $\{S_i \subset V\}_{i \in I}$ be a collection of affine subspaces of V. If $\cap_{i \in I} S_i$ is empty, we are done. If not, let $y \in \cap_{i \in I} S_i$. By (1), $W_i = S_i - y$ is a linear subspace. We claim that

\[\bigcap_{i \in I} S_i = \bigcap_{i \in I} (y + W_i) = y + \bigcap_{i \in I} W_i \]

and then $\cap_{i \in I} S_i$ is an affine subspace since $\cap_{i \in I} W_i$ is a linear subspace.

To prove (1.12), let $x \in \cap_{i \in I} S_i$. Then $x \in S_i = y + W_i$. Hence $x - y \in W_i$ for all $i \in I$. Consequently,

\[x - y \in \bigcap_{i \in I} W_i \Rightarrow x \in y + \bigcap_{i \in I} W_i \Rightarrow \bigcap_{i \in I} S_i \subset y + \bigcap_{i \in I} W_i \]

Let $w \in \cap_{i \in I} W_i$. Then $y + w \in S_i$ for all $i \in I$. Therefore, $y + w \in \cap_{i \in I} S_i$ and $y + \cap_{i \in I} W_i \subset \cap_{i \in I} S_i$. And (1.12) follows. \square

We say vectors $u_1, u_2, \ldots, u_m \in V$ are affinely dependent if there exist $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}$, not all zero, such that $\lambda_1 + \lambda_2 + \ldots + \lambda_m = 0$ and $\lambda_1 u_1 + \lambda_2 u_2 + \ldots + \lambda_m u_m = 0$. We say u is an affine combination of u_1, u_2, \ldots, u_m if there exist $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}$ such that $\lambda_1 + \lambda_2 + \ldots + \lambda_m = 1$ and $u = \lambda_1 u_1 + \lambda_2 u_2 + \ldots + \lambda_m u_m$.

Proposition 1.7. Let $v_1, v_2, \ldots, v_m \in \mathbb{R}^n$ with $v_j = (a_{1j}, a_{2j}, \ldots, a_{nj})$ for $j = 1, 2, \ldots, m$ and let $u_j = (a_{1j}, a_{2j}, \ldots, a_{nj}) \in \mathbb{R}^{n+1}$.

(1) v_1, v_2, \ldots, v_m are affinely dependent if and only if u_1, u_2, \ldots, u_m are linearly dependent.
(2) Let \(v = (a_1, a_2, ..., a_n) \) and \(u = (1, a_1, a_2, ..., a_n) \). Then \(v \) is an affine combination of \(v_1, v_2, ..., v_m \) if and only if \(u \) is a linear combination of \(u_1, u_2, ..., u_m \).

Proof. For (1),

\[
\begin{align*}
\text{\(u_1, u_2, ..., u_m \) linearly dependent} & \iff \exists \lambda_1, \lambda_2, ..., \lambda_m \in \mathbb{R}, \text{ not all zero, such that} \\
0 &= \sum_{j=1}^{m} \lambda_j u_j = \sum_{j=1}^{m} \lambda_j (1, a_{1j}, a_{2j}, ..., a_{nj}) \\
&\iff \sum_{j=1}^{m} \lambda_j = 0 \text{ and } \sum_{j=1}^{m} \lambda_j v_j = \sum_{j=1}^{m} \lambda_j (a_{1j}, a_{2j}, ..., a_{nj}) = 0 \\
&\iff v_1, v_2, ..., v_m \text{ affinely dependent}
\end{align*}
\]

(1.14)

For (2),

\[
\begin{align*}
\text{\(u \) is a linear combination of \(u_1, u_2, ..., u_m \)} & \iff \exists \lambda_1, \lambda_2, ..., \lambda_m \in \mathbb{R} \text{ such that} \\
(1, a_1, a_2, ..., a_n) = u &= \sum_{j=1}^{m} \lambda_j u_j = \sum_{j=1}^{m} \lambda_j (1, a_{1j}, a_{2j}, ..., a_{nj}) \\
&\iff \sum_{j=1}^{m} \lambda_j = 1 \text{ and } \sum_{j=1}^{m} \lambda_j v_j = \sum_{j=1}^{m} \lambda_j (a_{1j}, a_{2j}, ..., a_{nj}) = (a_1, a_2, ..., a_n) = v \\
&\iff v \text{ is an affine combination of } v_1, v_2, ..., v_m
\end{align*}
\]

(1.15)

\[\square\]

Corollary 1.8. Any \(m > n + 1 \) vectors in \(\mathbb{R}^n \) are affinely dependent.

A set \(S \) is said to be affine if every affine combination of two points in \(S \) belongs to \(S \), i.e., \(\lambda x + (1 - \lambda)y \in S \) for any \(x, y \in S \).

Proposition 1.9. A set \(S \) is affine if and only if every affine combination of points of \(S \) lies in \(S \).

Proof. “\(\Leftarrow \)” is trivial.

“\(\Rightarrow \)” : We prove by induction on \(n \) that \(\lambda_1 v_1 + \lambda_2 v_2 + ... + \lambda_n v_n \in S \) for any \(v_1, v_2, ..., v_n \in S \) and \(\lambda_1 + \lambda_2 + ... + \lambda_n = 1 \). This holds for \(n = 2 \) by definition. Suppose that it holds for \(n < k \). When \(n = k > 2 \). At least one of \(\lambda_1, \lambda_2, ..., \lambda_k \) is not equal to 1. Without the loss of generality, assume that...
1. BASICS

\(\lambda_k \neq 1. \) Then \(\lambda_1 + \lambda_2 + ... + \lambda_{k-1} \neq 0. \) Therefore,

\[
\lambda_1 v_1 + \lambda_2 v_2 + ... + \lambda_{k-1} v_{k-1} + \lambda_k v_k
\]

(1.16)

\[
= (\lambda_1 + \lambda_2 + ... + \lambda_{k-1}) \left(\frac{\lambda_1}{\lambda_1 + \lambda_2 + ... + \lambda_{k-1}} v_1 + \frac{\lambda_2}{\lambda_1 + \lambda_2 + ... + \lambda_{k-1}} v_2 + ... + \frac{\lambda_{k-1}}{\lambda_1 + \lambda_2 + ... + \lambda_{k-1}} v_{k-1} \right) + \lambda_k v_k
\]

By induction hypothesis,

\[
v = \frac{\lambda_1}{\lambda_1 + \lambda_2 + ... + \lambda_{k-1}} v_1 + \frac{\lambda_2}{\lambda_1 + \lambda_2 + ... + \lambda_{k-1}} v_2 + ... + \frac{\lambda_{k-1}}{\lambda_1 + \lambda_2 + ... + \lambda_{k-1}} v_{k-1} \in S
\]

(1.17)

Therefore, \(\lambda_1 v_1 + \lambda_2 v_2 + ... + \lambda_k v_k = (\lambda_1 + \lambda_2 + ... + \lambda_{k-1})v + \lambda_k v_k \in S. \)

Theorem 1.10. \(S \subseteq V \) is affine if and only if \(S \) is an affine subspace.

Proof. “\(\Rightarrow \)” If \(S \) is empty, there is nothing to prove. Suppose that \(v \in S. \) Let \(W = S - v. \) We will show that \(W \) is a linear subspace of \(V \) and then it follows that \(S \) is an affine subspace.

Let \(x, y \in S \) and \(\lambda \in \mathbb{R}. \) Then

\[
(x - v) + \lambda(y - v) = (x + \lambda y - \lambda v) - v
\]

(1.18)

Note that \(x + \lambda y - \lambda v \) is an affine combination of \(x, y \) and \(v. \) Therefore, \(x + \lambda y - \lambda v \in S, \) \((x - v) + \lambda(y - v) \in W \) and \(W \) is a linear subspace.

“\(\Leftarrow \)” Suppose that \(S \) is an affine subspace. Let \(S = v + W, \) where \(W \) is a linear subspace of \(V. \) For \(x, y \in W \) and \(\lambda \in \mathbb{R}, \)

\[
\lambda(v + x) + (1 - \lambda)(v + y) = v + (\lambda x + (1 - \lambda)y) \in v + W = S
\]

(1.19)

Therefore, \(S \) is affine.

By the above theorem, affine subspaces and affine sets are the same things. Therefore, we will use these two terms interchangeably from now on.

The affine hull of a set \(S \) is the intersection of all the affine sets which contain \(S, \) denoted by \(\text{aff}(S). \) Alternatively, the affine hull of \(S \) can be defined as the smallest affine set that contains \(S \) in the sense that \(\text{aff}(S) \subseteq T \) for any affine set \(T \supset S. \)

Proposition 1.11. The affine hull of \(S \) consists precisely of all affine combinations of points of \(S. \) That is,

\[
\text{aff}(S) = T = \{ \lambda_1 x_1 + \lambda_2 x_2 + ... + \lambda_m x_m : \lambda_1 + \lambda_2 + ... + \lambda_m = 1, \ x_1, x_2, ..., x_m \in S \}
\]

(1.20)

Proof. By Proposition 1.9, \(\lambda_1 x_1 + \lambda_2 x_2 + ... + \lambda_m x_m \in \text{aff}(S) \) for all \(\lambda_1 + \lambda_2 + ... + \lambda_m = 1, \ x_1, x_2, ..., x_m \in S. \) Therefore, \(T \subseteq \text{aff}(S). \)
On the other hand, for any \(\lambda \in \mathbb{R} \), \(x = \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_m x_m \) and \(y = \beta_1 y_1 + \beta_2 y_2 + \ldots + \beta_n y_n \in T \) with \(\alpha_1 + \alpha_2 + \ldots + \alpha_m = \beta_1 + \beta_2 + \ldots + \beta_n = 1 \) and \(x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_n \in S \),

\[
\lambda x + (1 - \lambda) y = \sum_{i=1}^{m} \lambda \alpha_i x_i + \sum_{j=1}^{n} (1 - \lambda) \beta_j y_j
\]

Since

\[
\sum_{i=1}^{m} \lambda \alpha_i + \sum_{j=1}^{n} (1 - \lambda) \beta_j = 1
\]

\(\lambda x + (1 - \lambda) y \) is an affine combination of \(x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_n \). Therefore, \(\lambda x + (1 - \lambda) y \in T \) and \(T \) is affine. It follows from the definition of \(\text{aff}(S) \) that \(\text{aff}(S) \subset T \). Hence \(T = \text{aff}(S) \).

Using the concept of affine hull, we have a (rudimentary) notion of dimensions of subsets in a vector space. The dimension of a set \(S \subset V \) is the dimension of its affine hull \(\text{aff}(S) \). Note that this is not a widely-accepted notion of dimension. For example, take \(S = \{p, q\} \) consisting of two distinct points \(p \) and \(q \). Then \(\text{aff}(S) \) is the line joining \(p \) and \(q \). Then \(\dim(S) = \dim(\text{aff}(S)) = 1 \). However, our intuition tells us \(S \) should have dimension 0; a better notion of dimension should give \(\dim(S) = 0 \). However, this is the definition we will use throughout this notes.

1.2. Topology on \(\mathbb{R}^n \). The inner product \(\langle u, v \rangle \) of \(u = (x_1, x_2, \ldots, x_n) \) and \(v = (y_1, y_2, \ldots, y_n) \in \mathbb{R}^n \) is defined to be

\[
\langle u, v \rangle = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n
\]

Alternatively, we write \(\langle u, v \rangle = u \cdot v \). It is easy to check the following.

Proposition 1.12. Let \(u, v, w \in \mathbb{R}^n \) and \(\lambda \in \mathbb{R} \).

1. \(\langle u, u \rangle \geq 0 \) and the equality holds if and only if \(u = 0 \);
2. \(\langle u, v \rangle = \langle v, u \rangle \);
3. \(\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle \);
4. \(\lambda \langle u, v \rangle = \langle \lambda u, v \rangle \);
5. \(\langle u + v, u + v \rangle + \langle u - v, u - v \rangle = 2 \langle u, u \rangle + 2 \langle v, v \rangle \)

For every \(v \in V \), we define the norm of \(v \), denoted by \(||v|| \), to be \(||v|| = \sqrt{\langle v, v \rangle} \).

Proposition 1.13. Let \(u, v \in V \) and \(\lambda \in \mathbb{R} \). Then

1. \(||\lambda v|| = |\lambda|||v|| \);
2. \(||\langle u, v \rangle|| \leq ||u|| \cdot ||v|| \);
3. \(||u + v|| \leq ||u|| + ||v|| \) and the equality holds when \(u = \lambda v \) for some \(\lambda \in \mathbb{R} \).
Proof. (1) is trivial. For (2), which is usually called Schwartz inequality, since
\begin{equation}
\langle u + \lambda v, u + \lambda v \rangle = (\|v\|^2)\lambda^2 + (2\langle u, v \rangle)\lambda + \|u\|^2 \geq 0
\end{equation}
for any \(u, v \in V\) and \(\lambda \in \mathbb{R}\),
\begin{equation}
(2\langle u, v \rangle)^2 - 4\|u\|^2 \cdot \|v\|^2 \leq 0
\end{equation}
and (2) follows. (3) follows from (2) directly. \(\square\)

For any two points \(p, q \in \mathbb{R}^n\), we define the distance between \(p\) and \(q\) as
\begin{equation}
d(p, q) = \|\overrightarrow{op} - \overrightarrow{oq}\|
\end{equation}
where \(o\) is the origin. It is easy to check

Proposition 1.14. Let \(x, y, z \in \mathbb{R}^n\).

(1) (Triangle Inequality) \(d(x, y) + d(y, z) \geq d(z, x)\);
(2) \(d(x, y) \geq 0\) and the equality holds if and only if \(x = y\).

\(d(\cdot, \cdot)\) is called a metric on and this makes \(\mathbb{R}^n\) a metric space. It induces a topology on \(\mathbb{R}^n\).

For \(x \in \mathbb{R}^n\) and \(r > 0\), we define
\begin{equation}
B(x, r) = \{y \in \mathbb{R}^n : d(y, x) < r\}
\end{equation}
to be the open ball with center \(x\) and radius \(r\).

Let \(S \subset \mathbb{R}^n\). A point \(x \in S\) is an interior point of \(S\) if \(B(x, r) \subset S\) for some \(r > 0\). The interior of \(S\), denoted by \(\text{Int}(S)\), is the subset of \(S\) consisting of all interior points of \(S\). \(S\) is open if \(S = \text{Int}(S)\), i.e., every point of \(S\) is an interior point of \(S\).

Proposition 1.15. \(\text{Int}(S) \subset S\) is open.

(1) The union of any collection of open sets is open.
(2) The intersection of any finitely many open sets is open.
(3) \(\text{Int}(S)\) is the union of all open subsets that are contained in \(S\).

Proof. For (1), let \(\{S_\alpha\}_{\alpha \in I}\) be a collection of open sets. For any point \(x \in \bigcup S_\alpha\), \(x \in S_\alpha\) for some \(\alpha \in I\). Since \(S_\alpha\) is open, there exists \(r > 0\) such that \(B(x, r) \subset S_\alpha\) and \(B(x, r) \subset \bigcup S_\alpha\). Consequently, \(x\) is an interior point of \(\bigcup S_\alpha\) and \(\bigcup S_\alpha\) is open.

For (2), it suffices to prove the intersection of two open sets is open. Let \(S_1\) and \(S_2\) be two open sets. Let \(x \in S_1 \cap S_2\). Since \(S_1\) and \(S_2\) are open, there exist \(r_1, r_2 > 0\) such that \(B(x, r_1) \subset S_1\) and \(B(x, r_2) \subset S_2\). Let \(r = \min(r_1, r_2)\). Then \(B(x, r) \subset S_1 \cap S_2\) and \(x\) is a point in \(S_1 \cap S_2\), and hence \(S_1 \cap S_2\) is open.

For (3), it is obvious that \(\text{Int}(S) \subset S\) is open. It suffices to show that any open set \(T \subset S\) is contained in \(\text{Int}(S)\). Let \(x \in T\). Since \(T\) is open, there exists \(r > 0\) such that \(B(x, r) \subset T \subset S\). So \(x\) is an interior point of \(S\) and \(x \in \text{Int}(S)\). Therefore, \(T \subset \text{Int}(S)\). \(\square\)
A set S is called closed if the complement of S is open. The closure of S, denoted by $\text{cl}(S)$, is the intersection of all closed sets that contain S.

Proposition 1.16.

1. The intersection of any collection of closed sets is closed.
2. The union of any finitely many closed sets is closed.
3. $x \in \text{cl}(S)$ if and only if $B(x, r) \cap S \neq \emptyset$ for all $r > 0$.
4. $\text{cl}(S^c) = \text{Int}(S)^c$.

Proof. (1) and (2) follow directly from Proposition 1.15.

For (3), let $x \in \text{cl}(S)$. If $B(x, r) \cap S = \emptyset$ for some $r > 0$, $B(x, r)^c \supset S$ and then $x \in B(x, r)^c$ by the definition of cl(S): contradiction. Therefore, $B(x, r) \cap S \neq \emptyset$ for all $r > 0$. On the other hand, let x be a point with the property that $B(x, r) \cap S \neq \emptyset$ for all $r > 0$. To show that $x \in \text{cl}(S)$, it suffices to show that $x \in T$ for every closed set $T \supset S$. Suppose that $x \notin T$. Then $x \in T^c$. Since T^c is open, $B(x, r) \subset T^c$ for some $r > 0$. Hence $B(x, r) \cap T = \emptyset$ and $B(x, r) \cap S = \emptyset$. Contradiction.

For (4), first notice that $S^c \subset \text{Int}(S)^c$. Since $\text{Int}(S)^c$ is closed, $\text{cl}(S^c) \subset \text{Int}(S)^c$. Let $x \in \text{Int}(S)^c$. If $x \notin \text{cl}(S^c)$, then $B(x, r) \cap S^c = \emptyset$ for some $r > 0$. Consequently, $B(x, r) \subset S$ and $x \in \text{Int}(S)$. Contradiction. Therefore, $x \in \text{cl}(S^c)$ and (4) follows. □

The boundary of S, denoted by $\text{bd}(S)$, is the difference $\text{cl}(S) - \text{Int}(S)$. It is not hard to see that $x \in \text{bd}(S)$ if $B(x, r) \cap S \neq \emptyset$ and $B(x, r) \cap S^c \neq \emptyset$ for any $r > 0$.

Let S be a subset of \mathbb{R}^n. S is contained in its affine hull $\text{aff}(S) \cong \mathbb{R}^k$. The relative interior of S, denoted by $\text{relint}(S)$, is the interior of S as a subset of \mathbb{R}^k.

A map $\mathbb{R}^n \to \mathbb{R}^m$ is called continuous if $f^{-1}(U)$ is open for any open set $U \subset \mathbb{R}^m$.

A set $S \subset \mathbb{R}^n$ is bounded if $S \subset B(o, R)$ for some $R > 0$. A set $S \subset \mathbb{R}^n$ is compact if it is closed and bounded.

Theorem 1.17. The images of compact sets under a continuous map are compact.

We will not prove this theorem here. Interested students may check any standard real analysis book for a proof.

Theorem 1.18 (Extreme Value Theorem). Let S be a compact set and $f : S \to \mathbb{R}$ be a continuous function on S. Then $f(x)$ achieves maximum and minimum on S.

Again, one may find a proof for this theorem in any standard real analysis book.

A set S is connected if there do not exist two open sets A and B such that $A \cap S \neq \emptyset$, $B \cap S \neq \emptyset$, $A \cap B = \emptyset$ and $S \subset A \cup B$.

1. EUCLIDEAN GEOMETRY 11
2. Convex Sets

2.1. Definitions. Let \(x, y \in \mathbb{R}^n \). We use the notation \(\overline{xy} \) to denote the line segment
\[
\overline{xy} = \{ \alpha x + \beta y : \alpha, \beta \geq 0, \alpha + \beta = 1 \}
\]
A set \(S \subset \mathbb{R}^n \) is convex if \(\overline{xy} \subset S \) for any \(x, y \in S \).

We call a vector \(x \) a convex combination of \(x_1, x_2, ..., x_m \) if there exists \(\lambda_1, \lambda_2, ..., \lambda_m \geq 0 \) such that \(\lambda_1 + \lambda_2 + ... + \lambda_m = 1 \) and \(x = \lambda_1 x_1 + \lambda_2 x_2 + ... + \lambda_m x_m \). Obviously, \(\overline{xy} \) is the set consisting of all convex combinations of the two points \(x \) and \(y \). So \(S \) is convex if it contains all convex combinations of any two points in \(S \). Actually, this is true for any finitely many points in \(S \).

That is, we have

Proposition 2.1. \(S \) is convex if and only if it contains all convex combinations of any finitely many points in \(S \).

The proof of the above proposition goes exactly like that of Proposition 1.9. The following is obvious.

We will leave the proofs of the following two statements as exercises.

Proposition 2.2. The intersection of any collection of convex sets is convex.

Proposition 2.3. Let \(f : V \to W \) be a linear transformation between two real vector spaces \(V \) and \(W \). Then \(f(S) \) is convex for any convex set \(S \subset V \) and \(f^{-1}(T) \) is convex for any convex set \(T \subset W \).

The convex hull of a set \(S \), denoted by \(\text{conv}(S) \), is the intersection of all convex sets which contain \(S \).

Proposition 2.4. The convex hull of \(S \) consists precisely of all convex combinations of points of \(S \). That is,
\[
\text{conv}(S) = T = \{ \lambda_1 x_1 + \lambda_2 x_2 + ... + \lambda_m x_m : \lambda_i \geq 0, \sum_{i=1}^{m} \lambda_i = 1, x_i \in S \text{ for } i = 1, 2, ..., m \}
\]

The proof of the above proposition goes exactly like that of Proposition 1.11, which we will not repeat here.

Next we will show the interior and closure of a convex set are still convex.

Proposition 2.5. Let \(S \) be a convex set. If \(x \in \text{Int}(S) \) and \(y \in S \), then \(\text{relint} \overline{xy} \subset \text{Int}(S) \). Consequently, \(\text{Int}(S) \) is convex.

Proof. Note that
\[
\text{relint} \overline{xy} = \{ \alpha x + \beta y : \alpha, \beta > 0, \alpha + \beta = 1 \}
\]
Let \(z = \alpha x + \beta y \in \text{relint} \overline{xy} \). Since \(x \in \text{Int}(S) \), \(B(x, r) \subset S \) for some \(r > 0 \). Since \(S \) is convex, \(aB(x, r) + \beta y \subset S \). Note that
\[
\alpha B(x, r) + \beta y = B(\alpha x, \alpha r) + \beta y = B(\alpha x + \beta y, \alpha r) = B(z, \alpha r)
\]
Therefore, \(z \in \operatorname{Int}(S) \) and \(\overline{\operatorname{relint} H} \subset \operatorname{Int}(S) \).

Proposition 2.6. Let \(S \) be a convex set. Then \(\overline{\operatorname{Cl}}(S) \) is convex.

Proof. Let \(x, y \in \overline{\operatorname{Cl}}(S) \). To show \(\overline{\operatorname{Cl}}(S) \) is convex, it suffices to show \(\alpha x + \beta y \in \overline{\operatorname{Cl}}(S) \) for all \(\alpha, \beta \geq 0 \) with \(\alpha + \beta = 1 \). Since \(x \in \overline{\operatorname{Cl}}(S) \), there exists a sequence \(\{x_n \in S\} \) such that \(d(x, x_n) \to 0 \) as \(n \to \infty \). Similarly, there exists a sequence \(\{y_n \in S\} \) such that \(d(y, y_n) \to 0 \) as \(n \to \infty \). To show that \(z = \alpha x + \beta y \in \overline{\operatorname{Cl}}(S) \), it suffices to show that there exists a sequence \(\{z_n \in S\} \) such that \(d(z, z_n) \to 0 \) as \(n \to \infty \). Let \(z_n = \alpha x_n + \beta y_n \). Obviously, \(z_n \in S \) since \(x_n, y_n \in S \) and \(S \) is convex. Then

\[
d(z, z_n) = ||z - z_n|| = ||\alpha(x - x_n) + \beta(y - y_n)||
\]

\[
\leq \alpha||x - x_n|| + \beta||y - y_n|| = \alpha d(x, x_n) + \beta d(y, y_n)
\]

Therefore, \(\lim_{n \to \infty} d(z, z_n) = 0 \) because \(\lim_{n \to \infty} d(x, x_n) = \lim_{n \to \infty} d(y, y_n) = 0 \).

Proposition 2.7. If \(S \) is an open set, then \(\overline{\operatorname{Cl}}(S) \) is also open.

Proof. It suffices to show that \(\overline{\operatorname{Cl}}(S) \subset \operatorname{Int(\operatorname{Cl}(S))} \). Since \(S \subset \overline{\operatorname{Cl}}(S) \), \(\operatorname{Int}(S) \subset \operatorname{Int(\operatorname{Cl}(S))} \). Since \(S \) is open, \(S \subset \operatorname{Int(\operatorname{Cl}(S))} \). By Proposition 2.5, \(\operatorname{Int}(\overline{\operatorname{Cl}}(S)) \) is convex. Therefore, \(\overline{\operatorname{Cl}}(S) \subset \operatorname{Int(\operatorname{Cl}(S))} \).

It is natural to expect the convex hull of a closed set is also closed. However, this is not true. For example, let \(f : \mathbb{R} \to \mathbb{R} \) be an arbitrary positive continuous function satisfying

\[
\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} f(x) = 0
\]

and \(S = \{(x, y) : y \geq f(x)\} \). Since \(f(x) \) is continuous, \(S \) is closed but we claim that \(\overline{\operatorname{Cl}}(S) = \{(x, y) : y > 0\} \), which is not closed. Let \(r = (x_0, y_0) \in \mathbb{R}^2 \) with \(y_0 > 0 \). Since \(f(x) \to 0 \) as \(x \to -\infty \), there exists \(x_1 < x_0 \) such that \(f(x_1) < y_0 \). Similarly, there exists \(x_2 > x_0 \) such that \(f(x_2) < y_0 \). Let \(p = (x_1, y_0) \) and \(q = (x_2, y_0) \). Since \(y_0 \geq f(x_i) \) for \(i = 1, 2 \), \(p, q \in S \). So \(\overline{\operatorname{pq}} \subset \overline{\operatorname{Cl}}(S) \). Obviously, \(r \in \overline{\operatorname{pq}} \) and therefore \(r \in \overline{\operatorname{Cl}}(S) \). Hence \(H = \{(x, y) : y > 0\} \subset \overline{\operatorname{Cl}}(S) \). On the other hand, \(S \subset H \) and \(H \) is convex. Therefore, \(H = \overline{\operatorname{Cl}}(S) \).

Therefore, the convex hull of a closed set \(S \subset \mathbb{R}^n \) is not necessarily convex. However, if we further assume that \(S \) is bounded, i.e., \(S \) is compact, \(\overline{\operatorname{Cl}}(S) \) is compact. The proof of this theorem requires Carathéodory’s theorem.

2.2. Carathéodory’s Theorem.

Theorem 2.8 (Carathéodory). If \(S \) is nonempty subset of \(\mathbb{R}^n \), then every \(x \) in \(\overline{\operatorname{Cl}}(S) \) can be expressed as a convex combination of \(n + 1 \) or fewer points of \(S \).
1. BASICS

Proof. Let m be the smallest number such that x is the convex combination of m points. Then there exist $x_1, x_2, \ldots, x_m \in S$ and $\lambda_1, \lambda_2, \ldots, \lambda_m \geq 0$ such that

\[(2.7) \quad \sum_{i=1}^{m} \lambda_i = 1 \quad \text{and} \quad x = \sum_{i=1}^{m} \lambda_i x_i\]

Due to our choice of m, $\lambda_i > 0$ for all $i = 1, 2, \ldots, m$.

Suppose that $m > n + 1$. By Corollary 1.8, x_1, x_2, \ldots, x_m are affinely dependent, i.e., there exist $\gamma_1, \gamma_2, \ldots, \gamma_m$, not all zero, such that

\[(2.8) \quad \sum_{i=1}^{m} \gamma_i = 0 \quad \text{and} \quad \sum_{i=1}^{m} \gamma_i x_i = 0\]

Let $I = \{i : \gamma_i > 0\} \subset \{1, 2, \ldots, m\}$. Since $\gamma_1, \gamma_2, \ldots, \gamma_m$ are not all zero, $I \neq \emptyset$. Let

\[(2.9) \quad a = \min_{i \in I} \lambda_i \gamma_i\]

and let $\alpha_i = \lambda_i - a \gamma_i$. If $i \in I$, then $\alpha_i \geq 0$ since $a \geq \lambda_i / \gamma_i$; if $i \notin I$, $\gamma_i \leq 0$ and hence $\alpha_i \geq 0$. Therefore, $\alpha_i \geq 0$ for all $i = 1, 2, \ldots, m$.

By (2.8),

\[(2.10) \quad \sum_{i=1}^{m} \alpha_i = \sum_{i=1}^{m} \lambda_i = 1 \quad \text{and} \quad \sum_{i=1}^{m} \alpha_i x_i = \sum_{i=1}^{m} \lambda_i x_i = x\]

Due to our choice of a, there is at least one $i \in I$ such that $a = \lambda_i / \gamma_i$. Correspondingly, $\alpha_i = 0$. Therefore by (2.10), x is a convex combination of $x_1, x_2, \ldots, \hat{x_i}, \ldots, x_m$. Contradiction.

Proposition 2.9. If $S \subset \mathbb{R}^n$ is a compact set, then $\text{conv}(S)$ is also compact.

Proof. By Caratheodory’s theorem, every point $x \in \text{conv}(S)$ is the convex combination of some $n + 1$ points $x_1, x_2, \ldots, x_{n+1}$ in S. Let $f : (\mathbb{R}^n)^{n+1} \times \mathbb{R}^{n+1} : \mathbb{R}^n$ be the map:

\[(2.11) \quad f(x_1, x_2, \ldots, x_{n+1}, \lambda_1, \lambda_2, \ldots, \lambda_{n+1}) = \lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_{n+1} x_{n+1}\]

where $x_i \in \mathbb{R}^n$ and $\lambda_i \in \mathbb{R}$. Let

\[(2.12) \quad D = \{(\lambda_1, \lambda_2, \ldots, \lambda_{n+1}) : \lambda_1, \lambda_2, \ldots, \lambda_{n+1} \geq 0, \lambda_1 + \lambda_2 + \ldots + \lambda_{n+1} = 1\}\]

Then f is continuous and D is compact.

By Caratheodory’s theorem, $f(S^{n+1} \times D) = \text{conv}(S)$. Since $S^{n+1} \times D$ is compact, $\text{conv}(S)$ is compact.

Proposition 2.10. Let $S \subset \mathbb{R}^n$ be a convex set. If $S \neq \emptyset$, then $\text{relint}(S) \neq \emptyset$.

2. CONVEX SETS

Proof. Consider S as a convex subset of $\text{aff}(S) = \mathbb{R}^k$. We will show that $\text{Int}(S) \neq \emptyset$.

Since $\text{aff}(S) = \mathbb{R}^k$, there exist $x_1, x_2, ..., x_{k+1} \in S$ which are affinely independent. Let $D \subset \mathbb{R}^{k+1}$ be the subset

$$D = \{ (\lambda_1, \lambda_2, ..., \lambda_{k+1}) : \lambda_1 + \lambda_2 + ... + \lambda_{k+1} = 1 \}$$

Let $f : D \rightarrow \mathbb{R}^k$ be the map

$$f(\lambda_1, \lambda_2, ..., \lambda_{k+1}) = \lambda_1 x_1 + \lambda_2 x_2 + ... + \lambda_{k+1} x_{k+1}$$

f is obviously continuous and onto. Also we claim that f is one-to-one. Otherwise, there exist $(\lambda'_1, \lambda'_2, ..., \lambda'_{k+1}) \neq (\lambda_1, \lambda_2, ..., \lambda_{k+1}) \in D$ such that $f(\lambda_1, \lambda_2, ..., \lambda_{k+1}) = f(\lambda'_1, \lambda'_2, ..., \lambda'_{k+1})$, which implies

$$(\lambda_1 - \lambda'_1)x_1 + (\lambda_2 - \lambda'_2)x_2 + ... + (\lambda_{k+1} - \lambda'_{k+1}) x_{k+1} = 0$$

and hence $x_1, x_2, ..., x_{k+1}$ are affinely dependent. Contradiction. Hence f is one-to-one. Let $g = f^{-1} : \mathbb{R}^k \rightarrow D$ be the inverse of f and let

$$g(z_1, z_2, ..., z_k) = (g_1(z_1, z_2, ..., z_k), g_2(z_1, z_2, ..., z_k), ..., g_{k+1}(z_1, z_2, ..., z_k))$$

where g_i are functions from $\mathbb{R}^k \rightarrow \mathbb{R}$.

More explicitly, let $x_j = (a_{1j}, a_{2j}, ..., a_{kj})$ and A be the $(k+1) \times (k+1)$ matrix

$$A = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1,k+1} \\
 a_{21} & a_{22} & \cdots & a_{2,k+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{k1} & a_{k2} & \cdots & a_{k,k+1} \\
 1 & 1 & \cdots & 1
\end{bmatrix}$$

Then

$$\begin{bmatrix}
 g_1(z_1, z_2, ..., z_k) \\
 g_2(z_1, z_2, ..., z_k) \\
 \vdots \\
 g_{k+1}(z_1, z_2, ..., z_k)
\end{bmatrix} = A^{-1} \begin{bmatrix}
 z_1 \\
 z_2 \\
 \vdots \\
 z_k \\
 1
\end{bmatrix}$$

Therefore, each $g_i(z_1, z_2, ..., z_k)$ is a (nonhomogeneous) linear function in $z_1, z_2, ..., z_k$. Therefore, g_i is continuous and g is continuous.

Let

$$x_0 = \frac{1}{k+1} (x_1 + x_2 + ... + x_{k+1}) \in S$$

Then

$$y_0 = g(x_0) = \left(\frac{1}{k+1}, \frac{1}{k+1}, \ldots, \frac{1}{k+1} \right)$$
Choose an arbitrary \(r \) with \(0 < r < 1/(k + 1) \). Since \(g \) is continuous, \(U = g^{-1}(B(y_0, r) \cap D) \) is an open set in \(\mathbb{R}^k \) that contains the point \(x_0 \). Note

\[
U = \{ \lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_{k+1} x_{k+1} : (\lambda_1, \lambda_2, \ldots, \lambda_{k+1}) \in B(y_0, r) \cap D \}
\]

Since \(0 < r < 1/(k + 1) \), \(\lambda_1, \lambda_2, \ldots, \lambda_{k+1} > 0 \) for every \((\lambda_1, \lambda_2, \ldots, \lambda_{k+1}) \in B(y_0, r) \). Therefore, \(U \subset S \) and \(x_0 \in \text{Int}(S) \). \(\square \)
CHAPTER 2

Some Selected Topics in Convex Geometry

1. Helly’s Theorem

Theorem 1.1. Let \(S_1, S_2, \ldots, S_m \) be \(m \geq n + 1 \) convex sets in \(\mathbb{R}^n \). If every \(n+1 \) sets among \(S_1, S_2, \ldots, S_m \) have nonempty intersection, \(S_1 \cap S_2 \cap \ldots \cap S_m \neq \emptyset \).

Proof. We prove by induction on \(m \). It is trivial for \(m = n + 1 \). Suppose that it holds for \(m < l \), where \(l > n + 1 \). We want to show it holds for \(m = l \).

By induction hypothesis, any \(m-1 \) sets among \(S_1, S_2, \ldots, S_m \) have nonempty intersection. That is, if we let

\[
T_k = S_1 \cap S_2 \cap \ldots \cap \hat{S}_k \cap \ldots \cap S_m
\]

for every \(k = 1, 2, \ldots, m \). Since \(T_k \neq \emptyset \), we choose (arbitrarily) a point \(x_k \in T_k \). Since \(m \geq n + 2 \), \(x_1, x_2, \ldots, x_m \) are affinely dependent. That is, there exist \(\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R} \), not all zero, such that

\[
\lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_m x_m = 0
\]

and

\[
\lambda_1 + \lambda_2 + \ldots + \lambda_m = 0
\]

Obviously, we may rewrite (1.2) as

\[
\sum_{\lambda_i > 0} \lambda_i x_i = -\sum_{\lambda_j \leq 0} \lambda_j x_j
\]

By (1.3),

\[
\lambda = \sum_{\lambda_i > 0} \lambda_i = -\sum_{\lambda_j \leq 0} \lambda_j
\]

Since \(\lambda_1, \lambda_2, \ldots, \lambda_m \) are not all zero, \(\lambda > 0 \). Hence

\[
x = \sum_{\lambda_i > 0} \left(\frac{\lambda_i}{\lambda} \right) x_i = \sum_{\lambda_j \leq 0} -\left(\frac{\lambda_j}{\lambda} \right) x_j
\]

Therefore, \(x \) is a convex combination of \(\{ x_i : \lambda_i > 0 \} \) and it is also a convex combination of \(\{ x_j : \lambda_j \leq 0 \} \). Let \(I = \{ i : \lambda_i > 0 \} \) and \(J = \{ j : \lambda_j \leq 0 \} \). Obviously, \(I \cup J = \{ 1, 2, \ldots, m \} \) and \(I \cap J = \emptyset \). Since \(x_i \in S_j \) for any \(i \neq j \),
$x_i \in \cap_{j \in J} S_j$ for every $i \in I$. Since $\cap_{j \in J} S_j$ is convex, $x \in \cap_{i \in I} S_i$. By the same argument, we see that $x \in \cap_{i \in I} S_i$. Therefore,

(1.7) \hspace{1cm} x \in (\bigcap_{i \in I} S_i) \cap (\bigcap_{j \in J} S_j) = \bigcap_{k=1}^m S_k

Therefore, $\cap_{k=1}^m S_k \neq \emptyset$. \hfill \Box

Obviously, the number $n + 1$ in the theorem is optimal. It is easy to find, for example, three convex sets in \mathbb{R}^2 such that any two of them have nonempty intersection but all three of them have empty intersection.

2. Introduction to Linear Programming

Let us consider the following question:

Question 2.1. Given points $x, x_1, x_2, \ldots, x_m \in \mathbb{R}^n$, determine whether $x \in \text{conv}\{x_1, x_2, \ldots, x_m\}$.

Here we assume that $\dim \text{aff}\{x_1, x_2, \ldots, x_m\} = n$; otherwise, we can restrict ourselves to $\mathbb{R}^k = \text{aff}\{x_1, x_2, \ldots, x_m\}$.

The case $m = n + 1$ is easy to treat. Since $x_1, x_2, \ldots, x_{n+1}$ are affinely independent, x can be written as an affine combination of $x_1, x_2, \ldots, x_{n+1}$ in a unique way:

(2.1) \hspace{1cm} x = \lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_{n+1} x_m

where

(2.2) \hspace{1cm} \lambda_1 + \lambda_2 + \ldots + \lambda_m = 1.

Therefore, $x \in \text{conv}\{x_1, x_2, \ldots, x_{n+1}\}$ if and only if $\lambda_i \geq 0$ for all $i = 1, 2, \ldots, n+1$.

However, the situation is more complicated when $m > n + 1$. We let $x_i = (a_{i1}, a_{i2}, \ldots, a_{in})$ and $x = (b_1, b_2, \ldots, b_n)$. Then (2.1) and (2.2) expand to

(2.3) \hspace{1cm} \begin{align*}
 a_{11} \lambda_1 &+ a_{12} \lambda_2 + \ldots + a_{1m} \lambda_m = b_1 \\
 a_{21} \lambda_1 &+ a_{22} \lambda_2 + \ldots + a_{2m} \lambda_m = b_2 \\
 \vdots & \vdots \ldots \vdots \vdots \\
 a_{n1} \lambda_1 &+ a_{n2} \lambda_2 + \ldots + a_{nm} \lambda_m = b_n \\
 \lambda_1 &+ \lambda_2 + \ldots + \lambda_m = 1
\end{align*}

with $\lambda_1, \lambda_2, \ldots, \lambda_m \geq 0$. Obviously, $x \in \text{conv}\{x_1, x_2, \ldots, x_{n+1}\}$ if and only if (2.3) has a solution. Here we may assume $b_i \geq 0$ for all i; otherwise, if $b_i < 0$, we replace the i-th equation by

(2.4) \hspace{1cm} -a_{i1} \lambda_1 - a_{i2} \lambda_2 - \ldots - a_{im} \lambda_m = -b_i

For reasons that will be clear later, we add n “auxiliary” variables $\lambda_{m+1}, \lambda_{m+2}, \ldots, \lambda_{m+n}, \lambda_{m+n+1}$. We consider the following problem:
Question 2.2. Minimize the function

\[f(\lambda_1, \lambda_2, ..., \lambda_m, \lambda_{m+1}, \lambda_{m+2}, ..., \lambda_{m+n+1}) \]

\[= \lambda_{m+1} + \lambda_{m+2} + ... + \lambda_{m+n+1} \]

with \(\lambda_i \geq 0 \) (i = 1, 2, ..., m, ..., m + n + 1) satisfying

\[
\begin{align*}
\sum_{j=1}^{m} a_{1j} \lambda_j + \lambda_{m+1} &= b_1 \\
\sum_{j=1}^{m} a_{2j} \lambda_j + \lambda_{m+2} &= b_2 \\
\sum_{j=1}^{m} a_{nj} \lambda_j + \lambda_{m+n} &= b_n \\
\sum_{j=1}^{m} \lambda_j + \lambda_{m+n+1} &= 1
\end{align*}
\]

Lemma 2.3. \(x \in \text{conv}\{x_1, x_2, ..., x_m\} \) if and only if \(f_{\text{min}} = 0 \) in Question 2.2.

Question 2.2 is a typical problem in so-called Linear Programming (LP). One of the many algorithms to solve a LP problem is Simplex Method. We will use the following example to demonstrate the algorithm.

Example 2.1. Let \(x_1 = (1, 0), \ x_2 = (0, 1), \ x_3 = (1, 1) \) and \(x_4 = (-2, -2) \). Determine whether \(x = (-1, -1) \in \text{conv}\{x_1, x_2, x_3, x_4\} \).

First we need to formulate the problem as in Question 2.2. Obviously, \(x \in \text{conv}\{x_1, x_2, x_3, x_4\} \) if and only if the system of linear equations

\[
\begin{align*}
\lambda_1 + \lambda_3 - 2\lambda_4 &= -1 \\
\lambda_2 + \lambda_3 - 2\lambda_4 &= -1 \\
\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 &= 1
\end{align*}
\]

has a solution with \(\lambda_i \geq 0 \) for \(i = 1, 2, 3, 4 \).

It is a requirement of simplex method that \(b_i \geq 0 \). Therefore, we change (2.7) to the form

\[
\begin{align*}
-\lambda_1 - \lambda_3 + 2\lambda_4 &= 1 \\
-\lambda_2 - \lambda_3 + 2\lambda_4 &= 1 \\
\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 &= 1
\end{align*}
\]

By adding three auxiliary variables \(\lambda_5, \lambda_6, \lambda_7 \), we put it into a LP problem:

(*) Minimize \(f(\lambda_1, ..., \lambda_7) = \lambda_5 + \lambda_6 + \lambda_7 \) with \(\lambda_i \geq 0 \) satisfying

\[
\begin{align*}
-\lambda_1 - \lambda_3 + 2\lambda_4 &= 1 \\
-\lambda_2 - \lambda_3 + 2\lambda_4 &= 1 \\
\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 &= 1 \\
\lambda_5 + \lambda_6 + \lambda_7 &= 1
\end{align*}
\]

In order to apply simplex method to (*), we need first to put the objective function \(f \) in terms of \(\lambda_1, \lambda_2, \lambda_3, \lambda_4 \) (using (2.9))

\[
\begin{align*}
f(\lambda_1, ..., \lambda_7) &= \lambda_3 - 5\lambda_4 + 3
\end{align*}
\]

We put the coefficients of (2.9) and (2.10) into a table called simplex tableau:
2. SOME SELECTED TOPICS IN CONVEX GEOMETRY

\[
\begin{pmatrix}
-1 & 0 & -1 & 2 & 1 & 0 & 0 & \vdots & 1 \\
0 & -1 & -1 & 2 & 0 & 1 & 0 & \vdots & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & \vdots & 1 \\
\cdots & \cdots \\
0 & 0 & 1 & -5 & 0 & 0 & 0 & \vdots & -3 \\
\end{pmatrix}
\]

(2.11)

Note that the last row \((c_1, c_2, ..., c_{m+n+1}, -A)\) corresponds to the objective function

\[
f(\lambda_1, \lambda_2, ..., \lambda_{m+n+1}) = c_1\lambda_1 + c_2\lambda_2 + \cdots + c_{m+n+1}\lambda_{m+n+1} + A
\]

(2.12)

The algorithm goes as follows:

1. If the entries of the last row except the rightmost entry, i.e., \(c_j \geq 0\) for all \(j\), stop and we are done. The minimum of \(f\) is given by \(-A\), where \(-A\) is the rightmost entry of the last row. And \(x \in \text{conv}\{x_1, x_2, ..., x_m\}\) if and only if \(A = 0\), i.e., the rightmost entry of the last row vanishes.

2. If one of \(c_j < 0\), we look at the \(j\)-th column. We choose the entry \(a_{kj}\) (called pivoting term) such that \(a_{kj} > 0\) and

\[
\frac{b_k}{a_{kj}} = \min \left\{ \frac{b_i}{a_{ij}} : a_{ij} > 0 \right\}
\]

(2.13)

Then we use \(a_{kj}\) to eliminate all the other entries of the \(j\)-the column by row operations.

3. Repeat step (2) until (1) happens.

Now let's carry it out for our example: (the pivoting term of each step is boxed)
Therefore, $f_{\min} = 0$ and $x \in \text{conv}\{x_1, x_2, x_3, x_4\}$. In addition, the final tableau also tells us how to write x as a convex combination of x_1, x_2, x_3, x_4.

Note that if we let $\lambda_3 = \lambda_5 = \lambda_6 = \lambda_7 = 0$, then $2\lambda_4 = 6/5$, $\lambda_1 = 1/5$ and $(5/2)\lambda_2 = 1/2$. Consequently, $x = (1/5)x_1 + (1/5)x_2 + (3/5)x_4$.

3. Convex Functions

Given a function $f(x)$, we consider the region $S = \{(x, y) : y \geq f(x)\} \subset \mathbb{R}^2$. There is a very useful criterion on the convexity of S.

Theorem 3.1. Suppose that $f(x)$ is twice differentiable and $f''(x) \geq 0$ for all $a \leq x \leq b$. Then the region $S = \{(x, y) : y \geq f(x), a \leq x \leq b\}$ is convex.

An easy corollary of the above theorem is the following:
Corollary 3.2. Suppose that \(f(x) \) is twice differentiable and \(f''(x) \leq 0 \) for all \(a \leq x \leq b \). Then the region \(S = \{(x, y) : y \leq f(x), a \leq x \leq b\} \) is convex.

Proof. Since \(f''(x) \leq 0 \), \(-f''(x) \geq 0 \) for all \(a \leq x \leq b \). Then \(S' = \{(x, y) : y \geq -f(x)\} \) is convex by the above theorem. Geometrically, \(S \) is the reflection of \(S' \) with respect to the \(x \)-axis. More precisely, let \(g : \mathbb{R}^2 \to \mathbb{R}^2 \) be the linear map given by \(g(x, y) = (x, -y) \). Then \(S = g(S') \). Since the images of convex sets under linear maps are convex, \(S \) is convex. \(\square \)

The proof of Theorem 3.1 is elementary. It uses nothing more than Mean Value Theorem (MVT).

Let \(p = (x_p, y_p) \) and \(q = (x_q, y_q) \) be two points in \(S \). WLOG, assume that \(x_p < x_q \). Since \(p, q \in S \), \(y_p \geq f(x_p) \) and \(y_q \geq f(x_q) \). Suppose that \(\overline{pq} \not\in S \). Then there exists a point \(r = (x_r, y_r) \in \overline{pq} \) such that \(r \not\in S \), i.e., \(y_r < f(x_r) \). By MVT, there exists \(x_u \in (x_p, x_r) \) such that

\[
(3.1) \quad f'(x_u) = \frac{f(x_r) - f(x_p)}{x_r - x_p}
\]

and there exists \(x_v \in (x_r, x_q) \) such that

\[
(3.2) \quad f'(x_v) = \frac{f(x_q) - f(x_r)}{x_q - x_r}
\]

Since \(y_r < f(x_r) \) and \(y_v \geq f(x_v) \),

\[
(3.3) \quad \frac{f(x_r) - f(x_p)}{x_r - x_p} \geq \frac{y_r - y_p}{x_r - x_p}
\]

By the same reason,

\[
(3.4) \quad \frac{f(x_q) - f(x_r)}{x_q - x_r} \leq \frac{y_q - y_r}{x_q - x_r}
\]

Since \(p, q, r \) are collinear,

\[
(3.5) \quad \frac{y_r - y_p}{x_r - x_p} = \frac{y_q - y_r}{x_q - x_r}
\]

Therefore,

\[
(3.6) \quad \frac{f(x_r) - f(x_p)}{x_r - x_p} \geq \frac{f(x_q) - f(x_r)}{x_q - x_r}
\]

That is, \(f'(x_u) > f'(x_v) \). This contradicts the fact that \(f''(x) \geq 0 \) and \(f'(x) \) is nondecreasing on \([a, b]\).

Theorem 3.1 can be generalized to dimension greater than 2. We will state the following without proof.

Theorem 3.3. Let \(f(x_1, x_2, \ldots, x_n) \) be a twice differentiable function in \(n \) variables. Suppose that the \(n \times n \) matrix (called the Hessian of \(f \))

\[
(3.7) \quad H = \left[\frac{\partial^2 f}{\partial x_i \partial x_j} \right]_{n \times n}
\]
is positive definite for every \((x_1, x_2, ..., x_n)\) in a convex set \(D \subset \mathbb{R}^n\). Then the region
\[
(3.8) \quad S = \{ (x_1, x_2, ..., x_{n+1}) : x_{n+1} \geq f(x_1, x_2, ..., x_n), (x_1, x_2, ..., x_n) \in D \}
\]
in \(\mathbb{R}^{n+1}\) is convex.
Bibliography

CHAPTER 1. Basics. 1. Euclidean Geometry. 1.1. Vector spaces. Let \mathbb{R} be the set of real numbers. A set $S \subset \mathbb{R}^n$ is convex if $xy \subset S$ for any $x, y \in S$. We call a vector x a convex combination of x_1, x_2, \ldots, x_m if there exists $\lambda_1, \lambda_2, \ldots, \lambda_m \geq 0$ such that $\lambda_1 + \lambda_2 + \cdots + \lambda_m = 1$ and $x = \lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_m x_m$. Obviously, xy is the set consisting of all convex combinations of the two points x and y. So S is convex if it contains all convex combinations of any two points in S. Actually, this is true for any finitely many points in S. That is, we have.

Proposition 2.1. S is convex if and only if it contains all convex combinations of any finitely many points in S. The proof of the above proposition...